KAMENAR, B., KAITNER, B., FERGUSON, G. & WATERS, T. N. (1990). Acta Cryst. 1920–1923.

- KAMENAR, B., KAITNER, B., STEFANOVIĆ, A. & WATERS, T. N. (1990). Acta Cryst. C46, 1627–1631.
- RAVIKUMAR, K., RAJAN, S. S., RAJARAM, V., RAMALINGAM, S. K. & NATARAJAN, S. (1986). Z. Kristallogr. 175, 117– 123.

- SHKOL'NIKOVA, L. M., KNYAZEVA, A. N. & VOBLIKOVA, V. A. (1967). Zh. Strukt. Khim. 8, 94–99.
- STEWART, J. M. & LINGAFELTER, E. C. (1959). Acta Cryst. 12, 842–845.
- VICKOVIĆ, I. (1988). J. Appl. Cryst. 21, 987-990.

Acta Cryst. (1990). C46, 1925-1926

## Tetraethylammonium-hexachlorozirconat und -hexachlorohafnat

VON KARIN RUHLANDT-SENGE, ALFRED-DIRK BACHER UND ULRICH MÜLLER

Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Strasse, D-3550 Marburg, Bundesrepublik Deutschland

(Eingegangen am 16. Februar 1990; angenommen am 30. März 1990)

Abstract.  $[N(C_2H_5)_4]_2ZrCl_6$ ,  $M_r = 564.45$ , monoclinic, C2/c, a = 14.071 (3), b = 14.481 (4), c =13.237 (2) Å,  $\beta = 90.63$  (2)°, V = 2697.1 (8) Å<sup>3</sup>, Z =4,  $D_x = 1.39 \text{ g cm}^{-3}$ ,  $\lambda$ (Mo K $\alpha$ ) = 0.7107 Å,  $\mu$  =  $9.09 \text{ cm}^{-1}$ , F(000) = 1168, T = 293 K, R = 0.075 for1710 unique observed reflexions.  $[N(C_2H_5)_4]_2HfCl_6$  $M_r = 651.72, C2/c, a = 14.062$  (2), b = 14.450 (2), c =13.237 (1) Å,  $\beta = 90.65$  (1)°, V = 2689.6 (4) Å<sup>3</sup>, Z =4,  $D_x = 1.61 \text{ g cm}^{-3}$ ,  $\lambda(Mo \ K\alpha) = 0.7107 \text{ Å}$ ,  $\mu = 42.4 \text{ cm}^{-1}$ , F(000) = 1296, T = 293 K, R = 0.046 for1703 observed reflexions. Both compounds are isotypic with  $[N(C_2H_5)_4]_2SnCl_6$ , having octahedral  $[MCl_6]^{2-}$  ions situated on inversion centres and  $NEt_4^+$  ions on twofold rotation axes. One half of the NEt<sup>+</sup> ions show positional disorder with two possible orientations such that the terminal C atoms of the ethyl groups coincide for both orientations. According to its lattice parameters,  $[N(C_2H_5)_4]_2TiCl_6$ is also isotypic: a = 13.939 (2), b = 14.263 (2), c = $13 \cdot 103$  (2) Å,  $\beta = 90 \cdot 89$  (1)°.

**Experimentelles.** Zu einer Lösung von 786 mg ZrCl<sub>4</sub> (2,5 mmol) in 20 ml wasserfreiem MeCN wurde eine Lösung von 805 mg NEt<sub>4</sub>SH (4,9 mmol) in 40 ml MeCN getropft. Unter Freisetzung von H<sub>2</sub>S entstand ein hellgelber Niederschlag, dessen genaue Natur noch nicht aufgeklärt werden konnte (laut chemischer Analyse enthält er außer Zr noch NEt<sub>4</sub><sup>+</sup>-Ionen, Cl und S im Verhältnis 1:1,33:2,75); er wurde abfiltriert. Aus dem Filtrat kristallisierte bei 277 K (NEt<sub>4</sub>)<sub>2</sub>ZrCl<sub>6</sub>. (NEt<sub>4</sub>)<sub>2</sub>HfCl<sub>6</sub> entstand auf die gleiche Art. Die erhoffte Synthese von (NEt<sub>4</sub>)<sub>2</sub>ZrSCl<sub>4</sub> bzw. (NEt<sub>4</sub>)<sub>2</sub>HfSCl<sub>4</sub> gelang auf diesem Wege nicht.

Vierkreisdiffraktometer Enraf-Nonius CAD-4. Gitterparameterbestimmung mit 25 Reflexen  $8 < \theta < 23^{\circ}$ .  $\omega$ -scan,  $\Delta \omega = (1,9 + 0,35 \tan \theta)^{\circ}$ , Meßbereich

0108-2701/90/101925-02\$03.00

 $\sin\theta/\lambda < 0.572 \text{ Å}^{-1}, \ 0 \le h \le 16, \ 0 \le k \le 16, \ -15 \le l$  $\leq$  15. Kontrollreflexe 060, 400, 311 zeigten Intensitätsschwankungen <1%. Strukturaufklärung durch Patterson-Synthese. Verfeinerung durch Mini- $\sum w(|F_{c}| - |F_{c}|)^{2}$ mieren von  $w = 1/\sigma^2(F)$ bis Extinktionskorrektur.  $(\Delta/\sigma)_{\rm max} < 0.01.$ Keine H-Atome nicht berücksichtigt. Rechenprogramme: Sheldrick (1976), Johnson (1965). Atomformfaktoren: Cromer & Mann (1968). f', f'': Cromer & Liberman (1970). Weitere Angaben siehe in Tabelle 1.

Es sind zwei kristallographisch unabhängige Kationen auf einer zweizähligen Drehachse vorhanden, von denen eines in zwei Orientierungen fehlgeordnet ist; die C-Atome der  $CH_3$ -Gruppen haben dabei für beide Orientierungen annähernd die gleiche Lage (Fig. 1). Die Atomparameter sind in Tabelle 2,\* Bindungsabstände und -winkel in Tabelle 3 aufgeführt. Wie bei Anwesenheit von fehlgeordneten Teilchen üblich, lassen sich nicht so gute *R*-Werte wie bei völlig geordneten Substanzen erreichen; dies gilt insbesondere für die Zr-Verbindung, während sich die Fehlordnung neben dem stärker streuenden Hafnium weniger stark auf den *R*-Wert auswirkt.

Verwandte Literatur. Isotype Verbindung:  $(NEt_4)_2$ -SnCl<sub>6</sub> (Sowa, Drück & Kutoğlu, 1981; Pabst, Ben Gholzen & Fuess, 1987). Andere Hexachlorozirconate:  $(PPh_4)_2ZrCl_6.2CH_2Cl_2$  (Hartmann,

© 1990 International Union of Crystallography

SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

<sup>\*</sup> Die Parameter für den anisotropen Temperaturfaktor und die Liste der beobachteten und berechneten Strukturfaktoren sind beim British Library Document Supply Centre (Supplementary Publication No. SUP 52908: 17 pp.) hinterlegt. Kopien sind erhältlich durch: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

## Tabelle 1. Angaben zur Datenauswertung

Tabelle 3. Bindungsabstände (Å) und -winkel (°)

(NEt<sub>4</sub>)<sub>2</sub>ZrCl<sub>6</sub> (NEt<sub>4</sub>)<sub>2</sub>HfCl<sub>6</sub> A۱  $0.13 \times 0.32 \times 0.42$  $0,12 \times 0,19 \times 0,31$ Kristallgröße (mm) Absorptionskorrektur Durch Vermessung Empirisch des Kristalls nach  $\psi$ -scans 0,79 bis 0,89 (abs.) Transmissionsfaktoren 0,60 bis 1,0 (rel.) Anzahl gemessene Reflexe 1996 1962 Anzahl unabhängige Reflexe 1921 1890 0,011 0.014  $R_{int}$ Beobachtete Reflexe  $F > 2\sigma(F)$ 1710 1703 Restelektronendichte (e  $Å^{-3}$ )  $1,3 > \Delta \rho > -0,9$  $0,8 > \Delta \rho > -1,0$ R 0,075 0,046 0,039 wR 0,061 S 6.47 5,31 C(11)-C(13)-

Tabelle 2. Atomkoordinaten und Parameter für den äauivalenten isotropen Temperaturfaktor  $(Å^2)$ (Hamilton, 1959)

|                                     | x          | y           | Ζ          | $U_{\bar{s}\alpha}$ |
|-------------------------------------|------------|-------------|------------|---------------------|
| (NEt <sub>4</sub> ) <sub>2</sub> Zr | Cl₅        |             |            | -                   |
| Zr                                  | 0,2500     | 0,2500      | 0,0000     | 0,0412 (6)          |
| Cl(1)                               | 0,2906 (2) | 0,2488 (3)  | 0,1799 (2) | 0,073 (1)           |
| Cl(2)                               | 0,0826 (2) | 0,2815 (2)  | 0,0392 (3) | 0,075 (2)           |
| Cl(3)                               | 0,2156 (2) | 0,0817 (2)  | 0,0046 (3) | 0,073 (2)           |
| N(1)                                | 0,0000     | 0,007 (1)   | 0,2500     | 0,047 (7)           |
| C(11)                               | 0,087 (1)  | -0,050 (1)  | 0,215 (1)  | 0,090 (8)           |
| C(12)                               | 0,059 (1)  | -0,1211 (9) | 0,132 (1)  | 0,070 (6)           |
| C(13)                               | 0,032 (1)  | 0,065 (1)   | 0,344 (1)  | 0,087 (7)           |
| C(14)                               | 0,1097 (9) | 0,1346 (9)  | 0,318 (1)  | 0,074 (7)           |
| N(2)                                | 0,5000     | 0,010 (1)   | 0,2500     | 0,078 (9)           |
| C(21)*                              | 0,542 (2)  | 0,026 (2)   | 0,127 (2)  | 0,068 (9)           |
| C(22)                               | 0,607 (1)  | 0,095 (1)   | 0,125 (1)  | 0,087 (7)           |
| C(23)*                              | 0,583 (2)  | -0,004 (2)  | 0,329 (2)  | 0,08 (1)            |
| C(24)                               | 0,647 (1)  | -0,075 (1)  | 0,313 (1)  | 0,109 (9)           |
| C(21a)*                             | 0,454 (2)  | 0,097 (2)   | 0,275 (2)  | 0,09 (1)            |
| C(23a)*                             | 0,559 (2)  | -0,076 (2)  | 0,258 (2)  | 0,074 (9)           |
| (NEt_)2H                            | iCL        |             |            |                     |
| ĥſ                                  | 0.2500     | 0.2500      | 0.0000     | 0.0409 (2)          |
| Cl(1)                               | 0,2900 (2) | 0,2486 (3)  | 0,1801 (2) | 0,072 (1)           |
| C1(2)                               | 0,0829 (2) | 0,2816 (2)  | 0,0383 (2) | 0,072 (1)           |
| C1(3)                               | 0,2161 (2) | 0,0830 (2)  | 0,0043 (3) | 0,070 (1)           |
| N(1)                                | 0,0000     | 0,007 (1)   | 0,2500     | 0,048 (7)           |
| C(11)                               | 0,0846 (9) | -0,052 (1)  | 0,220 (1)  | 0,082 (6)           |
| C(12)                               | 0.057 (1)  | -0,124 (1)  | 0,138 (1)  | 0,083 (7)           |
| C(13)                               | 0,031 (1)  | 0,067 (1)   | 0,339 (1)  | 0,086 (6)           |
| C(14)                               | 0,1068 (9) | 0,1392 (9)  | 0,315 (1)  | 0,080 (7)           |
| N(2)                                | 0,5000     | 0,012 (1)   | 0,2500     | 0,065 (9)           |
| C(21)*                              | 0,541 (2)  | 0,026 (2)   | 0,140 (2)  | 0,082 (9)           |
| C(22)                               | 0,605 (1)  | 0,097 (1)   | 0,130 (1)  | 0,083 (7)           |
| C(23)*                              | 0,580 (2)  | -0,002 (2)  | 0,320 (2)  | 0,09 (1)            |
| C(24)                               | 0,644 (1)  | -0,079 (1)  | 0,312 (1)  | 0,107 (8)           |
| C(21a)*                             | 0,455 (2)  | 0,110 (2)   | 0,260 (3)  | 0,10(1)             |
| C(23a)*                             | 0,556 (2)  | -0,080 (2)  | 0,254 (2)  | 0,074 (8)           |
|                                     |            |             |            |                     |

\*Besetzungswahrscheinlichkeit 0,5.



Fig. 1. Stereoskopische Ansicht der Elementarzelle von (NEt<sub>4</sub>)<sub>2</sub>ZrCl<sub>6</sub>. Von den beiden fehlgeordneten Orientierungen des NEt<sub>4</sub><sup>+</sup>-Ions an Atom N(2) ist eine gestrichelt gezeichnet.

| ıf                                              | die | Wiedergabe | der | relativ | ungenauen | Bindungswinkel | im | fehlge- |
|-------------------------------------------------|-----|------------|-----|---------|-----------|----------------|----|---------|
| ordneten NEt <sup>+</sup> -Ion wurde verzichtet |     |            |     |         |           |                |    |         |

|                       | (NEt <sub>4</sub> ) <sub>2</sub> ZrCl <sub>6</sub> | (NEt₄)₂HfCl <sub>6</sub> |
|-----------------------|----------------------------------------------------|--------------------------|
| M - Cl(1)             | 2,443 (3)                                          | 2,444 (2)                |
| M - Cl(2)             | 2,460 (3)                                          | 2,455 (3)                |
| $M \rightarrow Cl(3)$ | 2,487 (3)                                          | 2,468 (3)                |
| N—C(11)               | 1,56 (2)                                           | 1,52 (2)                 |
| N-C(13)               | 1,56 (2)                                           | 1,53 (2)                 |
| N-C(21)               | 1,75 (3)                                           | 1,59 (3)                 |
| N-C(21a)              | 1,46 (3)                                           | 1,57 (3)                 |
| N—C(23)               | 1,57 (3)                                           | 1,47 (3)                 |
| N-C(23a)              | 1,50 (3)                                           | 1,54 (3)                 |
| C(11)-C(12)           | 1,55 (2)                                           | 1,55 (2)                 |
| C(13)-C(14)           | 1,53 (2)                                           | 1,52 (2)                 |
| C(21)-C(22)           | 1,36 (3)                                           | 1,38 (3)                 |
| C(21a)-C(22)          | 1,59 (4)                                           | 1,71 (5)                 |
| C(23)-C(24)           | 1,38 (3)                                           | 1,44 (4)                 |
| C(23a)-C(24)          | 1,43 (3)                                           | 1,46 (3)                 |
| Cl(1)—MCl(2)          | 90,6 (1)                                           | 90,6 (1)                 |
| Cl(1) - M - Cl(3)     | 90,7 (1)                                           | 90,7 (2)                 |
| Cl(2) - M - Cl(3)     | 89,4 (1)                                           | 89,6 (1)                 |
| C(11) - N(1) - C(13)  | 107,6 (8)                                          | 107,6 (7)                |
| C(11) - N(1) - C(11') | 116 (1)                                            | 111,1 (1)                |
| C(11)-N(1)-C(13')     | 105,6 (8)                                          | 109,9 (7)                |
| C(13) - N(1) - C(13') | 115 (1)                                            | 110(1)                   |
| N(1) - C(11) - C(12)  | 112 (1)                                            | 112 (1)                  |
| N(1)-C(13)-C(14)      | 112 (1)                                            | 115 (1)                  |
|                       |                                                    |                          |

Dehnicke, Fenske, Goesemann & Baum, 1989); [PMe(NEt<sub>2</sub>)<sub>3</sub>]<sub>2</sub>ZrCl<sub>6</sub> (Schmidbaur, Pichl & Müller, 1986); Rb<sub>2</sub>ZrCl<sub>6</sub>,  $Cs_2ZrCl_6$  (Engel, 1935): (NH<sub>4</sub>)<sub>2</sub>ZrCl<sub>6</sub> (Ohashi, Yamanaka, Morimoto & Hattori, 1987). Andere Hexachlorohafnate: Bi10-(HfCl<sub>6</sub>)<sub>3</sub> (Friedman & Corbett, 1973); FeHfCl<sub>6</sub> (Berdonosov, Kharisov, Lebedev & Melikhov, 1987).

Wir danken der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie für die Unterstützung dieser Arbeit.

## Literatur

- BERDONOSOV, S. S., KHARISOV, B. I., LEBEDEV, V. YA. & MELIKHOV, I. V. (1987). Zh. Neorg. Khim. 32, 1260-1261.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1897
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324. ENGEL, G. (1935). Z. Kristallogr. 90, 341-373.
- FRIEDMAN, R. M. & CORBETT, J. D. (1973). Inorg. Chem. 12, 1134-1139.
- HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.
- HARTMANN, E., DEHNICKE, K., FENSKE, D., GOESEMANN, H. &
- BAUM, G. (1989). Z. Naturforsch. Teil B, 44, 1155-1160. JOHNSON, C. K. (1965). ORTEP. Bericht ORNL-3794. Oak Ridge
- National Laboratory, Tennessee, VStA.
- OHASHI, M., YAMANAKA, S., MORIMOTO, Y. & HATTORI, M. (1987). Bull. Chem. Soc. Jpn, 60, 2387-2390.
- PABST, I., BEN GHOLZEN, H. & FUESS, H. (1987). Z. Kristallogr. **178**, 180.
- SCHMIDBAUR, H., PICHL, R. & MÜLLER, G. (1986). Z. Naturforsch. Teil B, 41, 395-397.
- SHELDRICK, G. M. (1976). SHELX76. Programm für die Strukturbestimmung. Univ. Cambridge, England.
- SOWA, H., DRÜCK, U. & KUTOĞLU, A. (1981). Cryst. Struct. Commun. 10, 699-703.